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1. Compression of audio signals and t-f transforms

Definition of audio coding

» Minimize the amount of information to be stored/transmitted for
near-perfect audio quality

» or maximize the audio quality for a given amount of information

Link with time-frequency transforms

» State-of-the art codec (MP3, AAC) rely on invertible
time-frequency transforms (PQMF-Banks, MDCT)

» because audition can be efficiently modelized in the TF domain



1. Compression of audio signals and t-f transforms

Sparsity in audio coding

» Reducing the amount of information is achieved by

» Setting some coefficients to zero
» Re-quantize non-zero coefficients

» Example: AAC @ 128 kbps

» Stored/transmitted information: 10% of the original
» Non-zero coefficients: 30% of the original
» Remaining 20%: re-quantization

> A sparse representation is desirable for audio coding

» Target sparsity value : 30% non-zero coefficients or less



2. Writing compression as a standard optimization problem

» Consider discrete-time, N samples long, real-valued signals:
x € RV

The coding transform

» Consider a time-frequency transform characterized by

An analysis dictionary: A = { Pt gzﬁ]ff,}, ¢m € CN

A synthesis dictionary: S7 = {wlT e wAT,[}, Py, € CN

The analysis operatoris: y = XA <&  y, =<X,¢, > Vm
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The synthesis operatoris: X =yS < X=) Vu¥m

v

Perfect reconstruction < A S = Iy, which implies M > N



2. Writing compression as a standard optimization problem

The perceptual transform

» A relevant measure for perceived distortion can be computed
using a perceptual time-frequency transform of size Q > M

» The analysis dictionary is: P = {p’]q ! }, p, € C2
» There is no need for a synthesis dictionary

» We assume that perceptual weights 1, > 0 associated to each
vector p, can be computed using an audition model

The perceptual distortion measure

Dy =] (x—%) PA, |?

with A, = diag (p1,-- - , o) = D, = weighted L2 norm of the error



2. Writing compression as a standard optimization problem

Re-writing the perceptual distortion measure
D, =|| (xP—ySP)A, |°

Formulating the coding problem

» Find y that minimizes D),

» If we consider the quantization of y,,, y is searched only in a
finite subset of RX. That will not be considered for the moment

» This is a weighted-L2 optimization problem of the form:
Argminy [|| (g —yK) A, |]

» where K = SP is called the mixture matrix (size M x Q)



2. Writing compression as a standard optimization problem

Finding solutions to the coding problem
» The existence of solutions mainly depends on the properties of K
» If rk(K) = M, the solution is unique: y = g K|
» Otherwise, there is an infinite set of equivalent solutions

» For selecting "the best" solution, or when K is badly conditioned,
one usually add a regularization term that promotes sparsity:

Argmin, (|| (g —-yK)A, 1> +A 1y 117]

» Finding a sparse solution is especially desirable in audio coding



3. Choosing suitable time-frequency transforms

Choosing a perceptual transform: P

» Constrained by the existence of an earing model to compute 11,
» DFT or MDCT: work with standard MPEG hearing models

» Constant-Q or ERBLett: more sophisticated models available

Choosing a coding transform: A and S

» Audio signals should naturally have sparse representations in the
transform domain

» Perfect reconstruction is not necessary
» The choice shall depend on the rank of K = SP

» If rk(K) < M, there are many local minima and the practical
solution strongly depends on the initialization

» A good choice corresponds to rk(K) ~ M



3. Choosing suitable time-frequency transforms

Solutions that work

» A = Pis asingle MDCT

Then S = AT and K = I}; = the problem is diagonal

This is a trivial case: the solution is obtained by thresholding g
> A = P is union of MDCTs with different sizes

Then S = A7 and AS # Iy < no perfect reconstruction

K # Iy and rk(K) < M < many local minima

But K is a very sparse matrix: when thresholding very small

values to zero we get rk(K) = M

Solutions that does not work (for the moment)

» A isa MDCT and P is an ERBLett
rk(K) < M and the problem can not be regularized properly

» But things seem to get better with the real part of an ERBLett



4. Preliminary results with union of MDCT's

Analysis/synthesis matrix

» We choose the union of 2 MDCTs: 1024 bands and 128 bands
» idem AAC, but here both MDCTs can be used simultaneously
» For plots, we choose N = 4096 = M = 6144

Synthesis dictionnary S (madulus)
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4. Preliminary results with union of MDCT's

Perceptual matrix and mixture matrix

» WeassumeP=A=S"T=0=M
» ThenK =S ST = K(m, q) =< Omy Pg >
» 1k (K) = N = 4096 < M = 6144

Mixing matrix K
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4. Preliminary results with union of MDCT's

Thresholding the mixture matrix

» We set a threshold 7 so that K(m, q) — 0if K(m,q) < T
» This implies an error on the estimation of the distortion D),
» T = —108 dB = SNR = 110 dB (near perfect) and rk (K) = M
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4. Preliminary results with union of MDCT's

Thresholded mixture matrix

» T=-108dB

» tk (K) = M = there is a unique solution to the optimization
problem, i.e. the approximation of D), is convex

Thresholded mixing matrix K {energy in dE)
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4. Preliminary results with union of MDCT's

Implementations details

» The perceptual weights 11, are computed for both resolutions
(1024 and 128 bands) with the MPEG #2 hearing model

» The target g = x P is computed using a standard MDCT
implementation

> The thresholded mixture matrix is stored as a sparse matrix

» The signal is divided in macro-blocks, and the optimization is
performed independently on each macro-block

» No redundancy is added when macro-blocks overlap

» The sparsity level is set by the regularization constant A



4. Preliminary results with union of MDCT's

Sparsity rate = 43 %
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4. Preliminary results with union of MDCT's

Sparsity rate = 66 9
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4. Preliminary results with union of MDCT's

Sparsity rate = 83 %
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5. Perspectives

» Try different time-frequency transforms for S and P in order to
find the couple which offers the best tradeoff between perceived
audio quality and sparsity rate

» Try a more sophisticated perceptive model, different from the
MPEG #2

» Include the quantization step in the optimization algorithm



