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1. Compression of audio signals and t-f transforms

Definition of audio coding

I Minimize the amount of information to be stored/transmitted for
near-perfect audio quality

I or maximize the audio quality for a given amount of information

Link with time-frequency transforms

I State-of-the art codec (MP3, AAC) rely on invertible
time-frequency transforms (PQMF-Banks, MDCT)

I because audition can be efficiently modelized in the TF domain



1. Compression of audio signals and t-f transforms

Sparsity in audio coding

I Reducing the amount of information is achieved by
I Setting some coefficients to zero
I Re-quantize non-zero coefficients

I Example: AAC @ 128 kbps
I Stored/transmitted information: 10% of the original
I Non-zero coefficients: 30% of the original
I Remaining 20%: re-quantization

I A sparse representation is desirable for audio coding
I Target sparsity value : 30% non-zero coefficients or less



2. Writing compression as a standard optimization problem

I Consider discrete-time, N samples long, real-valued signals:
x ∈ RN

The coding transform

I Consider a time-frequency transform characterized by
I An analysis dictionary: A =

{
φH

1 · · ·φH
M
}

, φm ∈ CN

I A synthesis dictionary: ST =
{
ψT

1 · · ·ψT
M
}

, ψm ∈ CN

I The analysis operator is: y = x A ⇔ ym =< x, φm > ∀m
I The synthesis operator is: x̂ = y S ⇔ x̂ =

∑
m ym ψm

I Perfect reconstruction⇔ A S = IN , which implies M ≥ N



2. Writing compression as a standard optimization problem

The perceptual transform

I A relevant measure for perceived distortion can be computed
using a perceptual time-frequency transform of size Q ≥ M

I The analysis dictionary is: P =
{

pH
1 · · · pH

Q

}
, pq ∈ CQ

I There is no need for a synthesis dictionary
I We assume that perceptual weights µq > 0 associated to each

vector pq can be computed using an audition model

The perceptual distortion measure

Dp =‖ (x− x̂) P∆µ ‖2

with ∆µ = diag (µ1, · · · , µQ)⇒ Dp = weighted L2 norm of the error



2. Writing compression as a standard optimization problem

Re-writing the perceptual distortion measure

Dp =‖ (x P− y SP) ∆µ ‖2

Formulating the coding problem

I Find y that minimizes Dp

I If we consider the quantization of ym, y is searched only in a
finite subset of RK . That will not be considered for the moment

I This is a weighted-L2 optimization problem of the form:

Argminy
[
‖ (g− y K) ∆µ ‖2]

I where K = SP is called the mixture matrix (size M × Q)



2. Writing compression as a standard optimization problem

Finding solutions to the coding problem

I The existence of solutions mainly depends on the properties of K
I If rk(K) = M, the solution is unique: ỹ = g K†

I Otherwise, there is an infinite set of equivalent solutions
I For selecting "the best" solution, or when K is badly conditioned,

one usually add a regularization term that promotes sparsity:

Argminy
[
‖ (g− y K) ∆µ ‖2 +λ ‖ y ‖p]

I Finding a sparse solution is especially desirable in audio coding



3. Choosing suitable time-frequency transforms

Choosing a perceptual transform: P

I Constrained by the existence of an earing model to compute µq

I DFT or MDCT: work with standard MPEG hearing models
I Constant-Q or ERBLett: more sophisticated models available

Choosing a coding transform: A and S

I Audio signals should naturally have sparse representations in the
transform domain

I Perfect reconstruction is not necessary
I The choice shall depend on the rank of K = SP
I If rk(K)� M, there are many local minima and the practical

solution strongly depends on the initialization
I A good choice corresponds to rk(K) ' M



3. Choosing suitable time-frequency transforms

Solutions that work

I A = P is a single MDCT
Then S = AT and K = IM ⇒ the problem is diagonal
This is a trivial case: the solution is obtained by thresholding g

I A = P is union of MDCTs with different sizes
Then S = AT and AS 6= IN ⇔ no perfect reconstruction
K 6= IM and rk(K) < M ⇔ many local minima
But K is a very sparse matrix: when thresholding very small
values to zero we get rk(K) = M

Solutions that does not work (for the moment)

I A is a MDCT and P is an ERBLett
rk(K)� M and the problem can not be regularized properly

I But things seem to get better with the real part of an ERBLett



4. Preliminary results with union of MDCTs

Analysis/synthesis matrix

I We choose the union of 2 MDCTs: 1024 bands and 128 bands
I idem AAC, but here both MDCTs can be used simultaneously
I For plots, we choose N = 4096⇒ M = 6144



4. Preliminary results with union of MDCTs

Perceptual matrix and mixture matrix

I We assume P = A = ST ⇒ Q = M
I Then K = S ST ⇒ K(m, q) =< φm, φq >

I rk (K) = N = 4096 < M = 6144



4. Preliminary results with union of MDCTs

Thresholding the mixture matrix

I We set a threshold T so that K(m, q) 7→ 0 if K(m, q) < T
I This implies an error on the estimation of the distortion Dp

I T = −108 dB⇒ SNR = 110 dB (near perfect) and rk (K) = M



4. Preliminary results with union of MDCTs

Thresholded mixture matrix

I T = −108 dB
I rk (K) = M ⇒ there is a unique solution to the optimization

problem, i.e. the approximation of Dp is convex



4. Preliminary results with union of MDCTs

Implementations details

I The perceptual weights µq are computed for both resolutions
(1024 and 128 bands) with the MPEG #2 hearing model

I The target g = x P is computed using a standard MDCT
implementation

I The thresholded mixture matrix is stored as a sparse matrix
I The signal is divided in macro-blocks, and the optimization is

performed independently on each macro-block
I No redundancy is added when macro-blocks overlap
I The sparsity level is set by the regularization constant λ



4. Preliminary results with union of MDCTs

Sparsity rate = 43 %

SVega original signal SVega Reconstructed signal



4. Preliminary results with union of MDCTs

Sparsity rate = 66 %

SVega original signal SVega Reconstructed signal



4. Preliminary results with union of MDCTs

Sparsity rate = 83 %

SVega original signal SVega Reconstructed signal



5. Perspectives

I Try different time-frequency transforms for S and P in order to
find the couple which offers the best tradeoff between perceived
audio quality and sparsity rate

I Try a more sophisticated perceptive model, different from the
MPEG #2

I Include the quantization step in the optimization algorithm


